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Helical Instabilities in Solid-State Plasmas 
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The background of thermal carriers is included in a theory for helical instabilities in electron-hole plasmas. 
An important quantity in determining the stability criteria and frequency of the instability is the injection 
level. The theory applies to any injection level in w-type, p-type, and intrinsic semiconductors and to insula
tors. Comparison with Ancker-Johnson's experiment in £-InSb strongly supports the helical instability as the 
basic mechanism in the oscillistor. Experiments with different types of material should, according to the 
theory, give markedly different results. When the temperature dependence of the mobilities is known the 
plasma temperature can be determined from the electric field at the onset of instability. 

INTRODUCTION 

WHEN a magnetic field is applied parallel to a cur
rent in a semiconductor, oscillations develop 

when the magnetic field is increased above a certain 
critical value. Several authors1"7 have observed this 
effect, called the oscillistor.3 Recent experiments5*7 con
firm the suggestion made by Glicksman8 that the oscil
lations are caused by helical instabilities. This type of 
instability was first proposed by Kadomtsev and 
Nedospasov9 as an explanation of the anomalous dif
fusion in the positive column.10 Recently, Johnson and 
Jerde11 have given this theory a rigorous mathematical 
foundation. 

In a semiconductor in thermal equilibrium there is 
a background of electrons (density no) and holes (den
sity p0). The composition of the thermal plasma de
pends on where the material is intrinsic (no^po), p-type 
(po^no), or w-type (tio2>po). In insulators we have 
no=po=0. By injection or ionization in the bulk, addi
tional carriers can be introduced in the specimen. Elec
trons and holes are by these processes created in equal 
numbers, thus constituting an injected plasma. 

In the paper by Glicksman8 only the case of an in
jected plasma in the absence of a thermal background 
plasma was treated. However, the background plasma 
may be of great importance in a theory for the helical 
instability in a semiconductor plasma, as has been 
pointed out by several authors.51218 The purpose of 
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this paper is to present a theory for helical instabilities 
in solid-state plasmas that covers all injection levels in 
intrinsic, «-type, and ^-type semiconductors, as well as 
insulators. 

BASIC EQUATIONS 

We shall assume that the specimen is an infinitely 
long cylinder of radius R, and that the background 
carriers are uniformly distributed. The following condi
tion must therefore be fulfilled: 

Vn0= Vpo=0. (i) 

The continuity equations for electrons and holes are 

d»</d<+V((»o+»i)v«) = 7«i> 

dpt/dt+Vdpo+pdve)=ypi, 

(2) 

(3) 

where Hi and pi are the densities of injected electrons 
and holes, respectively. The velocity of the electrons is 
ve and of holes v*. On the right-hand side we have in
cluded bulk generation and recombination in terms of 
the proportionality constant % which, then may be 
either positive or negative. In the case of injection 
without recombination 7 is zero. 

The equations of motion are (mks units) 

(»o+»i)v«+.D«V»»+/*«(»o+»»)E 
+M.(»o+»Ov.XB=0, (4) 

(pQ+pi)vh+DhVpi-Hk(po+pi)E 
=0, (5) 

where we have used (1). E is the electric field, B the 
magnetic field, y.e and fih the electron and hole mobilities, 
and De and Dn their diffusion coefficients, respectively. 

We will now make the following assumptions: The 
injected plasma is quasi-neutral |»»—pi\^0 so that 
Poisson's equation is given as V2C/=0, where U is the 
potential. The temperature of electrons and holes are 
equal. We then have 

D.=p4V, Dh=phV, (6) 

where V is the temperature in electron volts. The self-
magnetic field caused by the current is negligible com
pared with the applied axial magnetic field B. 
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By putting pi=tii and introducing the potential U, we derive from Eqs. (2) to (5) two equations which 
will form the basis of our investigation. 

In cylindrical coordinates (r,dyz) they are 

(Kb-l)V 
r l d f dnA 1 d2nn 1 d / d(I\ 1 d / dU\ 

Lr dr\ dr J r2 dd2 J r dr\ ' dr ) r2 dd\ * d 6/ 

1 dn% dU 1 dn% dU~] 

K&+1 dtii 

He dt 

r l dn% dU 1 dnt dU~] nh dln{ fih d / dU\ 
+ ( 1 - K 6 2 ) M ^ \+(b-l)V € 2 — ) = 0, (7) 

Lr dd dr r dr 36 J M// dz2
 MA' dA dz I 

n/rl d f dm\ 1 d2nn tie f1 d / dU\ ! 5 2 f / 1 
- 2 7 — ( f— ] + (po-no)\ lr— )+ 

nXr dr\ dr) r2 dB2 J M* Lr dr \ dr J r2 dP J 

r ia^a^/ ia^ac7-i a2wt- a/ dU\ a+i 
) - ( K + 1 ) F + - ( 63— = ynt, 

)J dz2 dz\ dz) ae 

Me r\dnxdU ldtiidU-
+—M*B(6+1) 

Me Lr d0 dr r dr d$. 
(8) 

where b = fie/fxh is the mobility ratio, and the quantities 
Me' and MS are defined by 

M* 
Vh 

l+H2B2' 1 + M * 2 £ 2 

Further, we have defined 

K = \leWWMe, 
and 

(9) 

(10) 

(11) 

€3 = flo— KpQ+ ( 1 •— K)fli. 

THE STEADY STATE 

In the steady state d/dt=0. We shall assume cylindri
cal symmetry (i.e., d/d0=O), and further that both 
the electric field EZQ and the steady-state current jo% 
are constant in the z direction and zero in the r and 0 
directions. 

The condition for constant current in the z direction 
gives when used in Eq. (7) 

dUQ 

dr 

icb—I dtii 0 
r 

€1,0 dr 
(12) 

where tii,o and UQ are the steady-state density and 
potential, respectively, and €1,0 the value of ei with 
ni=tii,o. 

Equation (12) is the condition for zero current in 
the r direction, and gives the radial variation of the 
steady-state potential in terms of mto. 

Inserting (12) into (8) yields 

Id/ dnito\ y \xe 

rA(r) ) + »i.oH (icft+1)-1 

r dr\ dr ) ^V /*/ 

t d2nito dtiitQ 

(K+l)——-(K-l)Ez0-
dz2 dz 

> C (13) 

where A(r) is given as 

A(0 = 
/>o+«o+2tt»,o(V) 

po+Kbm+ (Kb+l)ni,o(r) 
(14) 

Since A is a function of Wi.o, Eq. (13) is nonlinear, 
and not separable into r and z dependencies. Since, in 
the two limiting cases W;,o< /̂>o+ nbrio and tii,o2>pQ+nbtio, 
A will be a slowly varying function of Wt,o, we shall 
linearize Eq. (13) by taking A as a constant. We shall 
for the time being denote this value A by A without 
further specification as to how it should be determined. 

Equation (13) can then be readily solved by separa
tion, the solution being 

«t ,0= Ni,QJo(P<f)ZQ(z), (15) 

where Nit0 is the value of wt-,0 at r = 0 and Jo(fior) the 
zero-order Bessel function. ZQ(Z) is the z-dependent part 
of the solution which, however, need not be specified in 
this investigation. £0 is given by 

M=—Jy+^-c), (16) 
M*'FA\ Kb+1 ) 

where C is a separation constant. If the density is zero 
at the wall 0o=2.4O48/£ where 2.4048 is the first zero 
of Jo. 

I t is apparent that taking A to be a constant is equiva
lent to assuming that the radial dependence of the 
steady-state density is a zero-order Bessel function. 

In the next section, where quantities involving A 
will be transformed by finite Hankel transforms, the 
r-dependent value of A, A0, given by (14) with 
nifo=Ni,oJo(pQr) will be used. 

PERTURBATION THEORY 

The steady-state solution may be perturbed by writ
ing the density ti{ and the potential U as 

»*=w t-,0+/(r,s)e^^+mff+w<), (17) 
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U= U0+g(r)e^kz+m9+^\ (18) 

where / and g are small quantities compared to nito and 
UQ, k the wave number along the z axis, m the wave 
number in the azimuthal direction, and w the frequency 
of the perturbation. 

The z dependence for / is chosen to be the same as 
for nito, i.e., f(r,z) = fi(r)ZQ(z), which gives the same 
loss rate in the z direction for / as for »t-t0. 

where £ is given by 

£ = /ze'FA/3o2. (22) 

Equations (20) and (21) are of the same type as those 
solved by Johnson and Jerde, and the same method of 
finite Hankel transforms can be used. Since a good ap
proximation to the general solution is obtained by keep
ing only the first terms in the series for / and h, the 
solutions are carried out in that approximation. 

A dispersion relation is derived from which the condi
tion for stability is found by requiring lm(co)>0. At 
the onset of instability we also have the condition that 
the derivative of Im(a>) with respect to the wave num
ber k must equal zero. With these conditions satisfied, 
we are able to express the wavelength, the electric field, 
and the frequency of the oscillations at the onset of 
instability in terms of the magnetic field. In writing 
down these results, we introduce the following dimen-
sionless quantities: 

Q=o)R2/fMeV, (23) 

where a- is a numerical constant, determined by the first 
zero of Jmifiir). 

14 This is justified when the condition 

I 1 dZpl I b+1 fRtnEro\ 
|Zo dz \^\b(K+lf'"kr V\ 

is satisfied. This is a rather weak condition and is easily satisfied 
when density of the injected plasma decreases slowly in the axial 
direction, as is believed to be the case in oscillistor experiments 
(reference 8). 

By inserting (17) and (18) into (7) and (8) and by 
neglecting products of / and g, we obtain two first-order 
equations in / and g. Neglecting terms containing 
dZo/dz,14 and elmininating g by introducing the function 
h defined by 

g=(l/e1,o)lh+(Kb-\)Va (19) 

these equations take the form 

The equation determining Z is 

3AGZ4+ (5A+BG)Z*+ (3B-CG)Z2 

-(3GD-C)Z-D=0. (24) 

The dimensionless electric field can be found from 

AZ*+BZ2+CZ+D=tnE(l+GZ)aZU28, (25) 

where the coefficients A to G are given by 

A = {\ + v2)WzWh 

B=(l+p){W1+l(l+vy)W1+(l + p) 

X(l+{W,-\)Wby]Wb}Wh 

C={m2v(l-p)W2
2+l(l+v)(<l--(l-2Wo)W5) 

+ (l+vy)W{]W1}Wh 
(26) 

D=[Wl
2+m2vW2

2~]WoWh 

n+p\ 
E=-M )(l+;y)1/2 

Xl(b+l)(l+y)W1+(b-l)W4]W2i 

_(b+l)(l+y)Wb+(b-l)W, 

~(^ > +l)( l+y)^ 1 +(6- l )PF4 , 

where 
y/b-W 

V==J ) . (27) 

%r ( e2,o\ 1 I d / dh\ m2 uh €2,o 
- Vl I - H - ( K J - I ) — ) k 2 + i ( l + b ) k E z Q \f= [r— ) h k2h 
'L \ €i,o/ J r dr\ drJ r2 ph' e1(0 

1 d / r dnit0 \ 
- ( K H - 1 ) A ) -

r dAeio Br / 
r l d / df\ m2 1 (1 d r d / f \ i m2 f } 

2V\ (r-) / \+(Kb-l)(p0-no)\ U-(_) - - — 
Lr dr\ dr/ r2 J [r drl dr\€i>Q/J r2 el>0l 

-V—\ 1 + JC—(icft—1) \k2f+\ 
At/!- €I , 0 J L He 

1 dnito 
im{Kb2- 1)/**B K (20) 

€1,0?* dr 

nb+\ He 
(f-f«)+(l-ic)—kE z0 

He 

1 dfii.o h \ dr d / h\~\ m2 h } He €3,o I dnito h 
= -(#o-ifo){ \r- [ — ) k2h-im(b+l)HhB , (21) 

6VL dr\€i,Q/ J r2 €i,0) He' €i,0 r dr €i,0 
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W\ to W$ are integrals defined as 

]¥,= !-(Kb+1) 
CLT) dJo dJ„ 

arj r 

Pi* Jo 

(S^Jo 1 + ( K & + 1 ) T 7 / 0 dr dr 

R JJ dJr 

-dr, 

l+(Kb+\)r,J0 dr 
-dr, 

Wt=(Kb+l), a j 
Jo 

R vi+2riJo 

0 'l+iKb+lhJo 
Jmdr, (28) 

2 

J 0 l+(Kb+l)VJQ 

-JJdr, 

Wb=(Kb+l)a r-
J o l+(Kb+l)rjJ0 

where 

Ni,0 

pQ+KbtlQ 

KpQ—tlQ 
*?3 = 

pQ+KbflQ 

and finally 

171 = -

V4~-

po+n0 

po+nbtiQ 

po+bfiQ 

po~\- nbtiQ 

m=-
po—no 

pQ~\-KbflQ 

(29) 

a=2{£[d7 r o (0 i r ) /dr ] r=s}- (30) 

When the mobility ratio b and the values of A^.o, »o, 
and po are known, the coefficients (26) can be calculated 
for a given value of y. A solution for the corresponding 
value of Z can then be found numerically from (24). 
Knowing Z we can then calculate 8, thus obtaining a 
stability curve relating the values of S and y at the 
onset of instability. 

The frequencies of the oscillations are given by 

Re(Q) = -
^2W2 

(l + v)WzZ* 
m(b+l)(l+y)[ 

+l(l+vy)Wi+(l+v)(l+Wb)-]WzZ 

b+1 l 
+ WQW1WZ- m vli*{\+yyiW2Z^<j&\. (31) 

b— 1 J 

Thus, the frequency can be calculated when Z and & 
are determined. 

I t can be shown that the m = 0 mode is stable. The 
helical-type instability which corresponds to m—\ is 
considered in the remaining part of this paper. 

ASYMPTOTIC SOLUTIONS 

Equations (24), (25), and (31) are investigated in 
the limiting case of small and large magnetic fields, 
i.e., y. In these limits the quantities rj to T?4 defined by 
(29) are constants. Thus, Wx to Wh defined by (28) are 
only functions of % 

1. y — > 0. In this limit we get Z ~ const, and the wave
length X=l/k is, therefore, constant. The electric 
field is given as a function of y by 

§ = K0(rj)y - 1 / 2 (32) 

where iv0(r?) is independent of y, but is a function of the 
injection level rj. 

The frequency 0 can be written in the form 

^U^y-^+L^f'*, (33) 

where L\=WJUO?), and L0, Lh and L2 are independent 
of y. 

Two cases may be distinguished: For n- and ^>-type 
material WIT* 0, thus for sufficiently small values of y 

0=7^(^ )^ -1 /2 . ( 3 4 ) 

From (28) we see that WA has the opposite sign for 
n-type and p-type material. Thus, the frequencies have 
opposite signs, which means that the rotation of the 
helix is opposite in the two materials, as has been found 
experimentally by Okamoto et at} Numerical calcula
tions show that the frequency for ^-type material is 
of the same sign as for intrinsic materials and insulators. 

For intrinsic material and insulators 1^4=0, and the 
first term in (33) is zero. Thus, the frequency for these 
materials varies with y as 

a=£,(,)y* (35) 

where, for intrinsic materials L2O?) is a function of q, 
while for insulators L2 is a constant. 

We now have the interesting result that for n- and 
£-type material, the absolute value of the frequency 
will approach infinity as the magnetic field becomes 
small. This is in agreement with the results obtained by 
Misawa13 for near intrinsic material. The frequency for 
intrinsic materials and insulators, however, in the same 
limit of magnetic field approaches zero. 

2. y—> 00. In this limit we also get Z « const. From 
the definition (23) of Z, it then follows that the wave
length X increases as y1/2 for large y. 

The electric field may be written 

(36) 

and the frequency for all types of material is given by 

O=L0 0(u)r1 / s- (37) 

CALCULATION OF TEMPERATURE AND FREQUENCY 

The passage of current through a semiconductor 
may cause heating of the plasma above the bath tem
perature. The temperature dependence of the mobilities 
may be expressed as15 

Me = M F o / F ) 1 / 2 , M / . = M V 1 0 1 / 2 , (38) 

15 R. A. Smith, Semiconductors (Cambridge University Press, 
New York, 1959), p. 160. 
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FIG. 1. Dimensions wavelength \/R at onset of instability as a 
function of dimensionless magnetic field y for the injection levels 
T?=0.01 and 0.64. 

where VQ is the bath temperature, fioe and fioh the mobili
ties at the temperature Vo, and V> V0. 

Then 
y=yoV0/V, (39) 

where 
y0=Mo«MoJ32. (40) 

Further So is defined as 

(41) 

When the values of EZQ and B are determined experi
mentally, So and y0 can be calculated. 

To find the values of S and y corrections must be made 
for the difference between plasma temperature V and 
sample temperature VQ. From the third equation (23) 
and (39) V can be eliminated, giving 

S= So- (42) 

yo 

In the regions where the asymptotic results of the last 
section apply, the corrected values of S and y may easily 
be determined, and hence the temperature and fre
quency calculated. 

We do this for the case y —» 0, wrhich is the one of 
greatest experimental interest. 

From Eqs. (23), (32), and (42) we calculate the tem
perature of the plasma 

V=[yoVo{EzoR/Ko)2Jlz. (43) 

FIG. 2. Dimensionless electric field 8 at onset of instability 
as a function of dimensionless magnetic field y for different in
jection levels 17. 

This expression for the plasma temperature as a 
function of the electric field, is based upon the assump
tion that the helical instability is the origin of the oscil
lations in the oscillistor. The validity of the expressions 
is limited to situations where the temperature-depend
ent mobilities are given by (38). 

When the injection ratio has been experimentally 
determined together with the electric and magnetic 
fields at the onset of oscillations, the temperature can 
be calculated from (43). I t should be noted that the 
temperature determined this way is independent of the 
specific properties of the material. 

For p- and w-type material we obtain the frequency 
corrected for plasma temperature 

^poeLlVoyo-^iEzo/Ko&yj*. (44) 

For intrinsic material and insulators we get 

a>=(ji0eL2VoyoU2R~2. (45) 

Koy Li, a n ( l £2 can be calculated numerically by taking 
a value y—yi<£l in the asymptotic region, and for this 

io* 

io» 

IO-1 

^ 

^ \ ^ 

p 

! -,..I.,J i t MM 

^ 

"S 

. . • < 1 . . . . 

^ ^ ^ - 3 

^ 

«0.(H 

^ 

10-* W* 10* 

FIG. 3. Dimensionless frequency O at the onset of instability 
as a function of dimensionless magnetic field y for different 
injection levels. 

value y, calculate the corresponding values S= Si and 
0=Qi as functions of injection level 77. Then 

K0=S1(v)y1^i Zi=fii(^)yi1/2, X2=fii(n)jr1 / 2 . (46) 

COMPARISON WITH EXPERIMENT 

To the author's knowledge only one experiment has 
been published containing sufficient data to check this 
theory. In the experiments reported by Ancker-John
son,6,7 the electric and magnetic fields and the oscil
lation frequency at the onset of instability were meas
ured in ^-InSb. 

The sample had a cross section 0.78X0.71 mm. As 
the value for R we have taken R—3.7X10~2 cm. The 
sample temperature was 77°K (Fo=6.6X20~3 eV). 
The electron mobility and the mobility ratio were 
Moe«2Xl05 cm2/V-sec and £«30 , respectively. The 
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injection level has been estimated by using the current-
voltage characteristic in the absence of applied magnetic 
field. When IT is the total current and IQ the Ohmic 
current, 

i ? « ( / r - / o ) / ( i + l ) / 0 . 

Equations (24), (25), and (31) have been solved for 
a number of different injection levels in £~type material 
with mobility ratio 5=30.16 

There is very little variation in the wavelength for 
different injection levels, and in Fig. 1 only the curves 
corresponding to t?=0.01 and 0.64 are drawn. As ex
pected the lowest injection levels give the most stable 
situation (Fig. 2). As the injection level increases to 
high values, the separation between the curves ap
proaches zero. The dimensionless frequency in Fig. 3 
shows a very strong dependence on injection level. For 
small values of y the decrease in frequency is of the order 
^lO2 when rj varies between 0.01 and 0.64. In Fig. 4 
we have plotted S=Si and fi=0i corresponding to 
y=y1= 10-3 a s functions of injection level rj. 

The experiment6,7 was done using values ;yo$*5X 10~2. 

10* 

W0* 

10 

M 0 3 

10*1 

1\° 

f r^ 

FIG. 4. Dimensionless electric field Si and frequency ill corre
sponding to yi =* KT"8 as function of injection level r\. 

Judging from the curves for S and Q (Fig. 2 and 3) the 
asymptotic formulas corresponding to y —* 0 are valid 
in this region. 

In the first three columns of Table I are listed the 

TABLE I. Experimental and theoretical quantities related 
to onset of instability. 

B 
(G) 

620 
490 
435 
285 
170 

Experimental* 
EgQ 

(V/cm) 

40 
65 
82 

103 
152 

/ 
(Mc/sec) 

27.5 
27.0 
25.0 
25.0 
22.5 

V 

0.03 
0.08 
0.14 
0.24 
0.56 

Theoretical 

/ 
V (eV) (Mc/sec) 

1.5X10-* 30.1 
2.8X10-* 24.6 
3.8X10-* 20.1 
3.9X10-2 17.0 
4.1X10-2 13.1 

16 Numerical calculations for a number of different materials 
are given by 0. Holter, Arbok Univ. Bergen. Mat.-Naturv. Serie 
1963 (in press). 

* See references 6 and 7. 

experimentally measured values of the magnetic field 
B, the electric field Ez0 and the frequency / . The fourth 
column gives the estimated values of the injection level 
rj. The two last columns give the values of the tempera
ture V and the frequency / calculated by using Eqs. 
(43) and (44), respectively. 

The temperature rises to a value corresponding to 
the optical phonon energy (~2.5X10~2 eV) at an elec
tric field ~~55 V/cm. Higher electric fields produce 
saturation at a value ~4X10~2 eV. 

The agreement between measured and calculated 
frequencies is good at low electric fields. The calculated 
frequencies, however, decrease more rapidly than the 
measured values. It has been observed that the self-
magnetic field, which has been neglected in the theory, 
is sufficient to cause pinching of the plasma for E> 102 

V/cm. 
Although the only experimental results available 

currently for check on the theory relate to />-InSb, the 
agreement for this case strongly indicates the helical 
instability as the basic mechanism in the oscillistor. 
However, the theory predicts markedly different results 
in other types of material, hence, further experimental 
checks on the theory are of interest. 
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